Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(2): e14266, 2024.
Article in English | MEDLINE | ID: mdl-38558467

ABSTRACT

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Subject(s)
Arachis , Seedlings , Arachis/genetics , Seedlings/genetics , Sodium Chloride , Multiomics , Gene Expression Profiling , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 14: 1269200, 2023.
Article in English | MEDLINE | ID: mdl-38078104

ABSTRACT

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

3.
BMC Plant Biol ; 23(1): 371, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37491223

ABSTRACT

BACKGROUND: Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS: In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS: It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.


Subject(s)
Arachis , Plant Growth Regulators , Arachis/metabolism , Plant Growth Regulators/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Breeding , Indoleacetic Acids/metabolism
5.
Front Plant Sci ; 14: 1343402, 2023.
Article in English | MEDLINE | ID: mdl-38312353

ABSTRACT

Introduction: Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods: This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results: In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion: This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.

6.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362327

ABSTRACT

Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.


Subject(s)
Arachis , Lignin , Arachis/metabolism , Lignin/metabolism , Gene Expression Regulation, Plant , Lipopolysaccharides/metabolism , Transcriptome
7.
Front Plant Sci ; 13: 1110910, 2022.
Article in English | MEDLINE | ID: mdl-36816479

ABSTRACT

Although foxtail millet, as small Panicoid crop, is of drought resilient, drought stress has a significant effect on panicle of foxtail millet at the yield formation stage. In this study, the changes of panicle morphology, photosynthesis, antioxidant protective enzyme system, reactive oxygen species (ROS) system, and osmotic regulatory substance and RNA-seq of functional leaves under light drought stress (LD), heavy drought stress (HD), light drought control (LDCK) and heavy drought control (HDCK) were studied to get a snap-shot of specific panicle morphological changes, physiological responses and related molecular mechanisms. The results showed that the length and weight of panicle had decreased, but with increased empty abortive rate, and then yield dropped off 14.9% and 36.9%, respectively. The photosynthesis of millet was significantly decreased, like net photosynthesis rate, stomatal conductance and transpiration rate, especially under HD treatment with reluctant recovery from rehydration. Under LD and HD treatment, the peroxidase (POD) was increased by 34% and 14% and the same as H2O2 by 34.7% and 17.2% compared with LDCK and HDCK. The ability to produce and inhibit O2- free radicals under LD treatment was higher than HD. The content of soluble sugar was higher under LD treatment but the proline was higher under HD treatment. Through RNA-seq analysis, there were 2,393 and 3,078 different genes expressed under LD and HD treatment. According to the correlation analysis between weighted gene coexpression network analysis (WGCNA) and physiological traits, the co-expression network of several modules with high correlation was constructed, and some hub genes of millet in response to drought stress were found. The expression changes relating to carbon fixation, sucrose and starch synthesis, lignin synthesis, gibberellin synthesis, and proline synthesis of millet were specifically analyzed. These findings provide a full perspective on how drought affects the yield formation of foxtail millet by constructing one work model thereby providing theoretical foundation for hub genes exploration and drought resistance breeding of foxtail millet.

8.
Nat Commun ; 9(1): 3368, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135430

ABSTRACT

Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.


Subject(s)
Melanoma/metabolism , Melanoma/pathology , N-Acetylhexosaminyltransferases/metabolism , Polysaccharides/metabolism , Animals , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Melanoma/genetics , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetylhexosaminyltransferases/genetics , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
9.
Nucleic Acids Res ; 46(15): e89, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29897492

ABSTRACT

The detection of tumor-derived cell-free DNA in plasma is one of the most promising directions in cancer diagnosis. The major challenge in such an approach is how to identify the tiny amount of tumor DNAs out of total cell-free DNAs in blood. Here we propose an ultrasensitive cancer detection method, termed 'CancerDetector', using the DNA methylation profiles of cell-free DNAs. The key of our method is to probabilistically model the joint methylation states of multiple adjacent CpG sites on an individual sequencing read, in order to exploit the pervasive nature of DNA methylation for signal amplification. Therefore, CancerDetector can sensitively identify a trace amount of tumor cfDNAs in plasma, at the level of individual reads. We evaluated CancerDetector on the simulated data, and showed a high concordance of the predicted and true tumor fraction. Testing CancerDetector on real plasma data demonstrated its high sensitivity and specificity in detecting tumor cfDNAs. In addition, the predicted tumor fraction showed great consistency with tumor size and survival outcome. Note that all of those testing were performed on sequencing data at low to medium coverage (1× to 10×). Therefore, CancerDetector holds the great potential to detect cancer early and cost-effectively.


Subject(s)
Algorithms , Cell-Free Nucleic Acids/genetics , Computational Biology/methods , DNA Methylation , Neoplasms/diagnosis , Cell-Free Nucleic Acids/chemistry , CpG Islands/genetics , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/blood , Neoplasms/genetics , ROC Curve , Reproducibility of Results
10.
Genome Biol ; 18(1): 53, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28335812

ABSTRACT

We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood sample using genome-wide DNA methylation data. CancerLocator outperforms two established multi-class classification methods on simulations and real data, even with the low proportion of tumor-derived DNA in the cell-free DNA scenarios. CancerLocator also achieves promising results on patient plasma samples with low DNA methylation sequencing coverage.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Neoplasms/diagnosis , Neoplasms/genetics , Algorithms , Computer Simulation , CpG Islands , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Humans , Models, Statistical , Reproducibility of Results , Workflow
11.
Cell ; 164(4): 805-17, 2016 02 11.
Article in English | MEDLINE | ID: mdl-26871637

ABSTRACT

While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").


Subject(s)
Alternative Splicing , Protein Isoforms/metabolism , Proteome/metabolism , Animals , Cloning, Molecular , Evolution, Molecular , Humans , Models, Molecular , Open Reading Frames , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteome/analysis
12.
Methods ; 93: 110-8, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26238263

ABSTRACT

In past decades, the experimental determination of protein functions was expensive and time-consuming, so numerous computational methods were developed to speed up and guide the process. However, most of these methods predict protein functions at the gene level and do not consider the fact that protein isoforms (translated from alternatively spliced transcripts), not genes, are the actual function carriers. Now, high-throughput RNA-seq technology is providing unprecedented opportunities to unravel protein functions at the isoform level. In this article, we review recent progress in the high-resolution functional annotations of protein isoforms, focusing on two methods developed by the authors. Both methods can integrate multiple RNA-seq datasets for comprehensively characterizing functions of protein isoforms.


Subject(s)
Cell Physiological Phenomena/physiology , Databases, Genetic , Protein Isoforms/physiology , Animals , Forecasting , Humans , RNA/physiology
13.
Cell ; 159(5): 1212-1226, 2014 11 20.
Article in English | MEDLINE | ID: mdl-25416956

ABSTRACT

Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ?14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ?30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a "broader" human interactome network than currently appreciated. The map also uncovers significant interconnectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high-quality interactome models will help "connect the dots" of the genomic revolution.


Subject(s)
Protein Interaction Maps , Proteome/metabolism , Animals , Databases, Protein , Genome-Wide Association Study , Humans , Mice , Neoplasms/metabolism
14.
Nat Commun ; 5: 3650, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24722188

ABSTRACT

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.


Subject(s)
Autistic Disorder/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Autistic Disorder/genetics , Genetic Predisposition to Disease/genetics , Humans , Molecular Sequence Data , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Risk Factors
15.
Methods ; 67(3): 313-24, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24583115

ABSTRACT

Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale.


Subject(s)
Alternative Splicing , Sequence Analysis, RNA/methods , Computational Biology , Data Interpretation, Statistical , Datasets as Topic
16.
Nucleic Acids Res ; 42(6): e39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24369432

ABSTRACT

Alternative transcript processing is an important mechanism for generating functional diversity in genes. However, little is known about the precise functions of individual isoforms. In fact, proteins (translated from transcript isoforms), not genes, are the function carriers. By integrating multiple human RNA-seq data sets, we carried out the first systematic prediction of isoform functions, enabling high-resolution functional annotation of human transcriptome. Unlike gene function prediction, isoform function prediction faces a unique challenge: the lack of the training data--all known functional annotations are at the gene level. To address this challenge, we modelled the gene-isoform relationships as multiple instance data and developed a novel label propagation method to predict functions. Our method achieved an average area under the receiver operating characteristic curve of 0.67 and assigned functions to 15 572 isoforms. Interestingly, we observed that different functions have different sensitivities to alternative isoform processing, and that the function diversity of isoforms from the same gene is positively correlated with their tissue expression diversity. Finally, we surveyed the literature to validate our predictions for a number of apoptotic genes. Strikingly, for the famous 'TP53' gene, we not only accurately identified the apoptosis regulation function of its five isoforms, but also correctly predicted the precise direction of the regulation.


Subject(s)
Gene Expression Profiling , Molecular Sequence Annotation , Protein Isoforms/physiology , Sequence Analysis, RNA , Apoptosis , Gene Regulatory Networks , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Isoforms/metabolism
17.
Cell ; 151(7): 1431-42, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23260136

ABSTRACT

De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We investigated global patterns of germline mutation by whole-genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing data sets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans.


Subject(s)
Autistic Disorder/genetics , Genome-Wide Association Study , Germ-Line Mutation , Mutation Rate , Animals , Cell Line , Exons , Female , Humans , Male , Maternal Age , Pan troglodytes/genetics , Paternal Age , Sequence Analysis, DNA , Twins, Monozygotic
18.
Nature ; 470(7332): 59-65, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21293372

ABSTRACT

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Subject(s)
DNA Copy Number Variations/genetics , Genetics, Population , Genome, Human/genetics , Genomics , Gene Duplication/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Mutagenesis, Insertional/genetics , Reproducibility of Results , Sequence Analysis, DNA , Sequence Deletion/genetics
19.
Nucleic Acids Res ; 39(9): 3864-78, 2011 May.
Article in English | MEDLINE | ID: mdl-21247874

ABSTRACT

Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding-non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine).


Subject(s)
Gene Regulatory Networks , RNA, Untranslated/physiology , Animals , Gene Expression Profiling , Genomics , Mice , Molecular Sequence Annotation , Nucleic Acid Probes/chemistry , Oligonucleotide Array Sequence Analysis , RNA, Untranslated/metabolism , Synaptic Transmission/genetics
20.
BMC Syst Biol ; 3: 65, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19558649

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs), a growing class of small RNAs with crucial regulatory roles at the post-transcriptional level, are usually found to be clustered on chromosomes. However, with the exception of a few individual cases, so far little is known about the functional consequence of this conserved clustering of miRNA loci. In animal genomes such clusters often contain non-homologous miRNA genes. One hypothesis to explain this heterogeneity suggests that clustered miRNAs are functionally related by virtue of co-targeting downstream pathways. RESULTS: Integrating of miRNA cluster information with protein protein interaction (PPI) network data, our research supports the hypothesis of the functional coordination of clustered miRNAs and links it to the topological features of miRNAs' targets in PPI network. Specifically, our results demonstrate that clustered miRNAs jointly regulate proteins in close proximity of the PPI network. The possibility that two proteins yield to this coordinated regulation is negatively correlated with their distance in PPI network. Guided by the knowledge of this preference, we found several network communities enriched with target genes of miRNA clusters. In addition, our results demonstrate that the variance of this propensity can also partly be explained by protein's connectivity and miRNA's conservation. CONCLUSION: In summary, this work supports the hypothesis of intra-cluster coordination and investigates the extent of this coordination.


Subject(s)
MicroRNAs/metabolism , Proteins/metabolism , Animals , Humans , Mice , Protein Binding , Protein Interaction Mapping , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...